import os import yaml from enum import Enum from typing import Optional from dotenv import load_dotenv from pydantic import BaseModel, Field, SecretStr load_dotenv() # --- 1. Define the Configuration Schema --- # Define an Enum for supported embedding providers class EmbeddingProvider(str, Enum): """ An enum to represent the supported embedding providers. This helps in type-checking and ensures only valid providers are used. """ GOOGLE_GENAI = "google_genai" MOCK = "mock" # New Enum for supported TTS providers class TTSProvider(str, Enum): """ An enum to represent the supported Text-to-Speech (TTS) providers. """ GOOGLE_GENAI = "google_genai" class ApplicationSettings(BaseModel): project_name: str = "Cortex Hub" version: str = "1.0.0" log_level: str = "INFO" class DatabaseSettings(BaseModel): mode: str = "sqlite" # "sqlite" or "postgresql" url: Optional[str] = None # Used if mode != "sqlite" local_path: str = "data/ai_hub.db" # Used if mode == "sqlite" class LLMProviderSettings(BaseModel): deepseek_model_name: str = "deepseek-chat" gemini_model_name: str = "gemini-1.5-flash-latest" class EmbeddingProviderSettings(BaseModel): # Add a new 'provider' field to specify the embedding service provider: EmbeddingProvider = Field(default=EmbeddingProvider.GOOGLE_GENAI) # Changed the default to match the test suite model_name: str = "models/text-embedding-004" api_key: Optional[SecretStr] = None # New settings class for TTS providers class TTSProviderSettings(BaseModel): provider: TTSProvider = Field(default=TTSProvider.GOOGLE_GENAI) voice_name: str = "Kore" api_key: Optional[SecretStr] = None class VectorStoreSettings(BaseModel): index_path: str = "data/faiss_index.bin" embedding_dimension: int = 768 class AppConfig(BaseModel): application: ApplicationSettings = Field(default_factory=ApplicationSettings) database: DatabaseSettings = Field(default_factory=DatabaseSettings) llm_providers: LLMProviderSettings = Field(default_factory=LLMProviderSettings) vector_store: VectorStoreSettings = Field(default_factory=VectorStoreSettings) embedding_provider: EmbeddingProviderSettings = Field(default_factory=EmbeddingProviderSettings) # Add the new TTS provider settings to the main config tts_provider: TTSProviderSettings = Field(default_factory=TTSProviderSettings) # --- 2. Create the Final Settings Object --- class Settings: """ Holds all application settings, validated and structured by Pydantic. Priority Order: Environment Variables > YAML File > Pydantic Defaults """ def __init__(self): config_path = os.getenv("CONFIG_PATH", "config.yaml") yaml_data = {} if os.path.exists(config_path): print(f"✅ Loading configuration from {config_path}") with open(config_path, 'r') as f: yaml_data = yaml.safe_load(f) or {} else: print(f"⚠️ '{config_path}' not found. Using defaults and environment variables.") config_from_pydantic = AppConfig.parse_obj(yaml_data) def get_from_yaml(keys): d = yaml_data for key in keys: d = d.get(key) if isinstance(d, dict) else None return d self.PROJECT_NAME: str = os.getenv("PROJECT_NAME") or \ get_from_yaml(["application", "project_name"]) or \ config_from_pydantic.application.project_name self.VERSION: str = config_from_pydantic.application.version self.LOG_LEVEL: str = os.getenv("LOG_LEVEL") or \ get_from_yaml(["application", "log_level"]) or \ config_from_pydantic.application.log_level # --- Database Settings --- self.DB_MODE: str = os.getenv("DB_MODE") or \ get_from_yaml(["database", "mode"]) or \ config_from_pydantic.database.mode # Get local path for SQLite, from env/yaml/pydantic local_db_path = os.getenv("LOCAL_DB_PATH") or \ get_from_yaml(["database", "local_path"]) or \ config_from_pydantic.database.local_path # Get external DB URL, from env/yaml/pydantic external_db_url = os.getenv("DATABASE_URL") or \ get_from_yaml(["database", "url"]) or \ config_from_pydantic.database.url if self.DB_MODE == "sqlite": # Ensure path does not have duplicate ./ prefix normalized_path = local_db_path.lstrip("./") self.DATABASE_URL: str = f"sqlite:///./{normalized_path}" if normalized_path else "sqlite:///./data/ai_hub.db" else: self.DATABASE_URL: str = external_db_url or "sqlite:///./data/ai_hub.db" # fallback if no URL provided # --- API Keys --- self.DEEPSEEK_API_KEY: Optional[str] = os.getenv("DEEPSEEK_API_KEY") self.GEMINI_API_KEY: Optional[str] = os.getenv("GEMINI_API_KEY") self.DEEPSEEK_MODEL_NAME: str = os.getenv("DEEPSEEK_MODEL_NAME") or \ get_from_yaml(["llm_providers", "deepseek_model_name"]) or \ config_from_pydantic.llm_providers.deepseek_model_name self.GEMINI_MODEL_NAME: str = os.getenv("GEMINI_MODEL_NAME") or \ get_from_yaml(["llm_providers", "gemini_model_name"]) or \ config_from_pydantic.llm_providers.gemini_model_name self.FAISS_INDEX_PATH: str = os.getenv("FAISS_INDEX_PATH") or \ get_from_yaml(["vector_store", "index_path"]) or \ config_from_pydantic.vector_store.index_path dimension_str = os.getenv("EMBEDDING_DIMENSION") or \ get_from_yaml(["vector_store", "embedding_dimension"]) or \ config_from_pydantic.vector_store.embedding_dimension self.EMBEDDING_DIMENSION: int = int(dimension_str) # New embedding provider settings embedding_provider_env = os.getenv("EMBEDDING_PROVIDER") if embedding_provider_env: embedding_provider_env = embedding_provider_env.lower() self.EMBEDDING_PROVIDER: EmbeddingProvider = EmbeddingProvider(embedding_provider_env or \ get_from_yaml(["embedding_provider", "provider"]) or \ config_from_pydantic.embedding_provider.provider) self.EMBEDDING_MODEL_NAME: str = os.getenv("EMBEDDING_MODEL_NAME") or \ get_from_yaml(["embedding_provider", "model_name"]) or \ config_from_pydantic.embedding_provider.model_name api_key_env = os.getenv("EMBEDDING_API_KEY") api_key_yaml = get_from_yaml(["embedding_provider", "api_key"]) api_key_pydantic = config_from_pydantic.embedding_provider.api_key.get_secret_value() if config_from_pydantic.embedding_provider.api_key else None self.EMBEDDING_API_KEY: Optional[str] = api_key_env or api_key_yaml or api_key_pydantic # --- New TTS Provider Settings --- tts_provider_env = os.getenv("TTS_PROVIDER") if tts_provider_env: tts_provider_env = tts_provider_env.lower() self.TTS_PROVIDER: TTSProvider = TTSProvider(tts_provider_env or \ get_from_yaml(["tts_provider", "provider"]) or \ config_from_pydantic.tts_provider.provider) self.TTS_VOICE_NAME: str = os.getenv("TTS_VOICE_NAME") or \ get_from_yaml(["tts_provider", "voice_name"]) or \ config_from_pydantic.tts_provider.voice_name tts_api_key_env = os.getenv("TTS_API_KEY") tts_api_key_yaml = get_from_yaml(["tts_provider", "api_key"]) tts_api_key_pydantic = config_from_pydantic.tts_provider.api_key.get_secret_value() if config_from_pydantic.tts_provider.api_key else None self.TTS_API_KEY: Optional[str] = tts_api_key_env or tts_api_key_yaml or tts_api_key_pydantic # Instantiate the single settings object for the application settings = Settings()