Newer
Older
ESP32-RetroPlay / build / esp-idf / esp_system / ld / sections.ld.in
/*

 * SPDX-FileCopyrightText: 2021 Espressif Systems (Shanghai) CO LTD

 *

 * SPDX-License-Identifier: Apache-2.0

 */
/*

 * SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD

 *

 * SPDX-License-Identifier: Apache-2.0

 */
/*

 * Automatically generated file. DO NOT EDIT.

 * Espressif IoT Development Framework (ESP-IDF) 5.4.1 Configuration Header

 */
       
/* List of deprecated options */
/* CPU instruction prefetch padding size for flash mmap scenario */
/*

 * PMP region granularity size

 * Software may determine the PMP granularity by writing zero to pmp0cfg, then writing all ones

 * to pmpaddr0, then reading back pmpaddr0. If G is the index of the least-significant bit set,

 * the PMP granularity is 2^G+2 bytes.

 */
/* CPU instruction prefetch padding size for memory protection scenario */
/* Memory alignment size for PMS */
    /* rtc timer data (s_rtc_timer_retain_mem, see esp_clk.c files). For rtc_timer_data_in_rtc_mem section. */
/* Default entry point */
ENTRY(call_start_cpu0);
SECTIONS
{
  /**

   * RTC fast memory holds RTC wake stub code,

   * including from any source file named rtc_wake_stub*.c

   */
  .rtc.text :
  {
    
 . = ALIGN(4); 
 _rtc_fast_start = ABSOLUTE(.);
    
 . = ALIGN(4); 
 _rtc_text_start = ABSOLUTE(.);
    *(.rtc.entry.literal .rtc.entry.text)
    mapping[rtc_text]
    *rtc_wake_stub*.*(.literal .text .literal.* .text.*)
    *(.rtc_text_end_test)
    /* Padding for possible CPU prefetch + alignment for PMS split lines */
    . += 16;
    . = ALIGN(256);
    _rtc_text_end = ABSOLUTE(.);
  } > rtc_iram_seg
  /**

   * This section located in RTC FAST Memory area.

   * It holds data marked with RTC_FAST_ATTR attribute.

   * See the file "esp_attr.h" for more information.

   */
  .rtc.force_fast :
  {
    
 . = ALIGN(4); 
 _rtc_force_fast_start = ABSOLUTE(.);
    mapping[rtc_force_fast]
    *(.rtc.force_fast .rtc.force_fast.*)
    
 . = ALIGN(4); 
 _rtc_force_fast_end = ABSOLUTE(.);
  } > rtc_data_seg
  /**

   * RTC data section holds RTC wake stub

   * data/rodata, including from any source file

   * named rtc_wake_stub*.c and the data marked with

   * RTC_DATA_ATTR, RTC_RODATA_ATTR attributes.

   * The memory location of the data is dependent on

   * CONFIG_ESP32S3_RTCDATA_IN_FAST_MEM option.

   */
  .rtc.data :
  {
    _rtc_data_start = ABSOLUTE(.);
    mapping[rtc_data]
    *rtc_wake_stub*.*(.data .rodata .data.* .rodata.*)
    _rtc_data_end = ABSOLUTE(.);
  } > rtc_data_location
  /* RTC bss, from any source file named rtc_wake_stub*.c */
  .rtc.bss (NOLOAD) :
  {
    _rtc_bss_start = ABSOLUTE(.);
    *rtc_wake_stub*.*(.bss .bss.*)
    *rtc_wake_stub*.*(COMMON)
    mapping[rtc_bss]
    _rtc_bss_end = ABSOLUTE(.);
  } > rtc_data_location
  /**

   * This section holds data that should not be initialized at power up

   * and will be retained during deep sleep.

   * User data marked with RTC_NOINIT_ATTR will be placed

   * into this section. See the file "esp_attr.h" for more information.

   * The memory location of the data is dependent on

   * CONFIG_ESP32S3_RTCDATA_IN_FAST_MEM option.

   */
  .rtc_noinit (NOLOAD):
  {
    
 . = ALIGN(4); 
 _rtc_noinit_start = ABSOLUTE(.);
    *(.rtc_noinit .rtc_noinit.*)
    
 . = ALIGN(4); 
 _rtc_noinit_end = ABSOLUTE(.);
  } > rtc_data_location
  /**

   * This section located in RTC SLOW Memory area.

   * It holds data marked with RTC_SLOW_ATTR attribute.

   * See the file "esp_attr.h" for more information.

   */
  .rtc.force_slow :
  {
    
 . = ALIGN(4); 
 _rtc_force_slow_start = ABSOLUTE(.);
    *(.rtc.force_slow .rtc.force_slow.*)
    
 . = ALIGN(4); 
 _rtc_force_slow_end = ABSOLUTE(.);
  } > rtc_slow_seg
  /**

   * This section holds RTC data that should have fixed addresses.

   * The data are not initialized at power-up and are retained during deep

   * sleep.

   */
  .rtc_reserved (NOLOAD):
  {
    
 . = ALIGN(4); 
 _rtc_reserved_start = ABSOLUTE(.);
    /**

     * New data can only be added here to ensure existing data are not moved.

     * Because data have adhered to the end of the segment and code is relied

     * on it.

     * >> put new data here <<

     */
    *(.rtc_timer_data_in_rtc_mem .rtc_timer_data_in_rtc_mem.*)
    KEEP(*(.bootloader_data_rtc_mem .bootloader_data_rtc_mem.*))
    _rtc_reserved_end = ABSOLUTE(.);
  } > rtc_reserved_seg
  _rtc_reserved_length = _rtc_reserved_end - _rtc_reserved_start;
  ASSERT((_rtc_reserved_length <= LENGTH(rtc_reserved_seg)),
          "RTC reserved segment data does not fit.")
  /* Get size of rtc slow data based on rtc_data_location alias */
  _rtc_slow_length = (ORIGIN(rtc_slow_seg) == ORIGIN(rtc_data_location))
                        ? (_rtc_force_slow_end - _rtc_data_start)
                        : (_rtc_force_slow_end - _rtc_force_slow_start);
  _rtc_fast_length = (ORIGIN(rtc_slow_seg) == ORIGIN(rtc_data_location))
                        ? (_rtc_force_fast_end - _rtc_fast_start)
                        : (_rtc_noinit_end - _rtc_fast_start);
  ASSERT((_rtc_slow_length <= LENGTH(rtc_slow_seg)),
          "RTC_SLOW segment data does not fit.")
  ASSERT((_rtc_fast_length <= LENGTH(rtc_data_seg)),
          "RTC_FAST segment data does not fit.")
  /* Send .iram0 code to iram */
  .iram0.vectors :
  {
    _iram_start = ABSOLUTE(.);
    /* Vectors go to IRAM */
    _vector_table = ABSOLUTE(.);
    . = 0x0;
    KEEP(*(.WindowVectors.text));
    . = 0x180;
    KEEP(*(.Level2InterruptVector.text));
    . = 0x1c0;
    KEEP(*(.Level3InterruptVector.text));
    . = 0x200;
    KEEP(*(.Level4InterruptVector.text));
    . = 0x240;
    KEEP(*(.Level5InterruptVector.text));
    . = 0x280;
    KEEP(*(.DebugExceptionVector.text));
    . = 0x2c0;
    KEEP(*(.NMIExceptionVector.text));
    . = 0x300;
    KEEP(*(.KernelExceptionVector.text));
    . = 0x340;
    KEEP(*(.UserExceptionVector.text));
    . = 0x3C0;
    KEEP(*(.DoubleExceptionVector.text));
    . = 0x400;
    _invalid_pc_placeholder = ABSOLUTE(.);
    *(.*Vector.literal)
    *(.UserEnter.literal);
    *(.UserEnter.text);
    . = ALIGN (16);
    *(.entry.literal)
    *(.entry.text)
    *(.init.literal)
    *(.init)
    _init_end = ABSOLUTE(.);
  } > iram0_0_seg
  .iram0.text :
  {
    /* Code marked as running out of IRAM */
    _iram_text_start = ABSOLUTE(.);
    mapping[iram0_text]
  } > iram0_0_seg
  /**

   * This section is required to skip .iram0.text area because iram0_0_seg and

   * dram0_0_seg reflect the same address space on different buses.

   */
  .dram0.dummy (NOLOAD):
  {
    . = ORIGIN(dram0_0_seg) + MAX(_iram_end - _diram_i_start, 0);
  } > dram0_0_seg
  .dram0.data :
  {
    _data_start = ABSOLUTE(.);
    *(.gnu.linkonce.d.*)
    *(.data1)
    *(.sdata)
    *(.sdata.*)
    *(.gnu.linkonce.s.*)
    *(.gnu.linkonce.s2.*)
    *(.jcr)
    mapping[dram0_data]
    _data_end = ABSOLUTE(.);
  } > dram0_0_seg
  /**

   * This section holds data that should not be initialized at power up.

   * The section located in Internal SRAM memory region. The macro _NOINIT

   * can be used as attribute to place data into this section.

   * See the "esp_attr.h" file for more information.

   */
  .noinit (NOLOAD):
  {
    
 . = ALIGN(4); 
 _noinit_start = ABSOLUTE(.);
    *(.noinit .noinit.*)
    
 . = ALIGN(4); 
 _noinit_end = ABSOLUTE(.);
  } > dram0_0_seg
  /* Shared RAM */
  .dram0.bss (NOLOAD) :
  {
    
 . = ALIGN(8); 
 _bss_start = ABSOLUTE(.);
    /**

     * ldgen places all bss-related data to mapping[dram0_bss]

     * (See components/esp_system/app.lf).

     */
    mapping[dram0_bss]
    
 . = ALIGN(8); 
 _bss_end = ABSOLUTE(.);
  } > dram0_0_seg
  ASSERT(((_bss_end - ORIGIN(dram0_0_seg)) <= LENGTH(dram0_0_seg)),
         "DRAM segment data does not fit.")
  .flash.text :
  {
    _stext = .;
    /**

     * Mark the start of flash.text.

     * This can be used by the MMU driver to maintain the virtual address.

     */
    _instruction_reserved_start = ABSOLUTE(.);
    _text_start = ABSOLUTE(.);
    mapping[flash_text]
    *(.stub)
    *(.gnu.warning)
    *(.gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
    *(.irom0.text) /* catch stray ICACHE_RODATA_ATTR */
    /**

     * CPU will try to prefetch up to 16 bytes of of instructions.

     * This means that any configuration (e.g. MMU, PMS) must allow

     * safe access to up to 16 bytes after the last real instruction, add

     * dummy bytes to ensure this

     */
    . += 16;
    _text_end = ABSOLUTE(.);
    /**

     * Mark the flash.text end.

     * This can be used for MMU driver to maintain virtual address.

     */
    _instruction_reserved_end = ABSOLUTE(.);
    _etext = .;
    /**

     * Similar to _iram_start, this symbol goes here so it is

     * resolved by addr2line in preference to the first symbol in

     * the flash.text segment.

     */
    _flash_cache_start = ABSOLUTE(0);
  } > default_code_seg
  /**

   * Dummy section represents the .flash.text section but in default_rodata_seg.

   * Thus, it must have its alignment and (at least) its size.

   */
  .flash_rodata_dummy (NOLOAD):
  {
    _flash_rodata_dummy_start = ABSOLUTE(.);
    . = ALIGN(ALIGNOF(.flash.text)) + SIZEOF(.flash.text);
    /* Add alignment of MMU page size + 0x20 bytes for the mapping header. */
    . = ALIGN(0x10000) + 0x20;
  } > default_rodata_seg
  .flash.appdesc : ALIGN(0x10)
  {
    /**

     * Mark flash.rodata start.

     * This can be used for mmu driver to maintain virtual address

     */
    _rodata_reserved_start = ABSOLUTE(.);
    _rodata_start = ABSOLUTE(.);
    /* !DO NOT PUT ANYTHING BEFORE THIS! */
    /* Should be the first.  App version info. */
    *(.rodata_desc .rodata_desc.*)
    /* Should be the second. Custom app version info. */
    *(.rodata_custom_desc .rodata_custom_desc.*)
    /**

     * Create an empty gap within this section. Thanks to this, the end of this

     * section will match .flah.rodata's begin address. Thus, both sections

     * will be merged when creating the final bin image.

     */
    . = ALIGN(ALIGNOF(.flash.rodata));
  } > default_rodata_seg
  ASSERT((ADDR(.flash.rodata) == ADDR(.flash.appdesc) + SIZEOF(.flash.appdesc)), "The gap between .flash.appdesc and .flash.rodata must not exist to produce the final bin image.")
  .flash.rodata : ALIGN(0x10)
  {
    _flash_rodata_start = ABSOLUTE(.);
    mapping[flash_rodata]
    *(.irom1.text) /* catch stray ICACHE_RODATA_ATTR */
    *(.gnu.linkonce.r.*)
    *(.rodata1)
    /* C++ exception handlers table. */
    
 . = ALIGN(4); 
 __XT_EXCEPTION_TABLE_ = ABSOLUTE(.);
    *(.xt_except_table)
    *(.gcc_except_table .gcc_except_table.*)
    *(.gnu.linkonce.e.*)
    
 . = ALIGN(4); 
 __XT_EXCEPTION_DESCS_ = ABSOLUTE(.);
    *(.xt_except_desc)
    *(.gnu.linkonce.h.*)
    __XT_EXCEPTION_DESCS_END__ = ABSOLUTE(.);
    *(.xt_except_desc_end)
    /**

     * C++ constructor tables.

     *

     * Excluding crtbegin.o/crtend.o since IDF doesn't use the toolchain crt.

     */
    
 . = ALIGN(4); 
 __init_array_start = ABSOLUTE(.);
    KEEP (*(EXCLUDE_FILE (*crtend.* *crtbegin.*) .ctors SORT(.ctors.*)))
    __init_array_end = ABSOLUTE(.);
    /* Addresses of memory regions reserved via SOC_RESERVE_MEMORY_REGION() */
    
 . = ALIGN(4); 
 soc_reserved_memory_region_start = ABSOLUTE(.);
    KEEP (*(.reserved_memory_address))
    soc_reserved_memory_region_end = ABSOLUTE(.);
    /* System init functions registered via ESP_SYSTEM_INIT_FN */
    
 . = ALIGN(4); 
 _esp_system_init_fn_array_start = ABSOLUTE(.);
    KEEP (*(SORT_BY_INIT_PRIORITY(.esp_system_init_fn.*)))
    _esp_system_init_fn_array_end = ABSOLUTE(.);
    _rodata_end = ABSOLUTE(.);
    /* Literals are also RO data. */
    _lit4_start = ABSOLUTE(.);
    *(*.lit4)
    *(.lit4.*)
    *(.gnu.linkonce.lit4.*)
    _lit4_end = ABSOLUTE(.);
    /* TLS data. */
    
 . = ALIGN(4); 
 _thread_local_start = ABSOLUTE(.);
    *(.tdata)
    *(.tdata.*)
    *(.tbss)
    *(.tbss.*)
    _thread_local_end = ABSOLUTE(.);
  } > default_rodata_seg
  _flash_rodata_align = ALIGNOF(.flash.rodata);
  /**

   * This section contains all the rodata that is not used

   * at runtime, helping to avoid an increase in binary size.

   */
  .flash.rodata_noload (NOLOAD) :
  {
    /**

     * This symbol marks the end of flash.rodata. It can be utilized by the MMU

     * driver to maintain the virtual address.

     * NOLOAD rodata may not be included in this section.

     */
    _rodata_reserved_end = ABSOLUTE(.);
    mapping[rodata_noload]
  } > default_rodata_seg
  /**

   * Dummy section to skip flash rodata sections.

   * Because to `extern_ram_seg` and `drom0_0_seg` are on the same bus

   */
  .ext_ram.dummy (NOLOAD):
  {
    . = ORIGIN(extern_ram_seg);
    . = . + (_rodata_reserved_end - _flash_rodata_dummy_start);
    . = ALIGN (0x10000);
  } > extern_ram_seg
  /* Marks the end of IRAM code segment */
  .iram0.text_end (NOLOAD) :
  {
    /* Padding for possible CPU prefetch + alignment for PMS split lines */
    . += 16;
    . = ALIGN(256);
    /* iram_end_test section exists for use by memprot unit tests only */
    *(.iram_end_test)
    _iram_text_end = ABSOLUTE(.);
  } > iram0_0_seg
  .iram0.data :
  {
    
 . = ALIGN(4); 
 _iram_data_start = ABSOLUTE(.);
    mapping[iram0_data]
    
 . = ALIGN(4); 
 _iram_data_end = ABSOLUTE(.);
  } > iram0_0_seg
  .iram0.bss (NOLOAD) :
  {
    
 . = ALIGN(4); 
 _iram_bss_start = ABSOLUTE(.);
    mapping[iram0_bss]
    _iram_bss_end = ABSOLUTE(.);
    
 . = ALIGN(4); 
 _iram_end = ABSOLUTE(.);
  } > iram0_0_seg
  /* Marks the end of data, bss and possibly rodata  */
  .dram0.heap_start (NOLOAD) :
  {
    /* Lowest possible start address for the heap */
    
 . = ALIGN(8); 
 _heap_low_start = ABSOLUTE(.);
  } > dram0_0_seg
  /* DWARF 1 */
  .debug 0 : { *(.debug) }
  .line 0 : { *(.line) }
  /* GNU DWARF 1 extensions */
  .debug_srcinfo 0 : { *(.debug_srcinfo) }
  .debug_sfnames 0 : { *(.debug_sfnames) }
  /* DWARF 1.1 and DWARF 2 */
  .debug_aranges 0 : { *(.debug_aranges) }
  .debug_pubnames 0 : { *(.debug_pubnames) }
  /* DWARF 2 */
  .debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
  .debug_abbrev 0 : { *(.debug_abbrev) }
  .debug_line 0 : { *(.debug_line) }
  .debug_frame 0 : { *(.debug_frame) }
  .debug_str 0 : { *(.debug_str) }
  .debug_loc 0 : { *(.debug_loc) }
  .debug_macinfo 0 : { *(.debug_macinfo) }
  .debug_pubtypes 0 : { *(.debug_pubtypes) }
  /* DWARF 3 */
  .debug_ranges 0 : { *(.debug_ranges) }
  /* SGI/MIPS DWARF 2 extensions */
  .debug_weaknames 0 : { *(.debug_weaknames) }
  .debug_funcnames 0 : { *(.debug_funcnames) }
  .debug_typenames 0 : { *(.debug_typenames) }
  .debug_varnames 0 : { *(.debug_varnames) }
  /* GNU DWARF 2 extensions */
  .debug_gnu_pubnames 0 : { *(.debug_gnu_pubnames) }
  .debug_gnu_pubtypes 0 : { *(.debug_gnu_pubtypes) }
  /* DWARF 4 */
  .debug_types 0 : { *(.debug_types) }
  /* DWARF 5 */
  .debug_addr 0 : { *(.debug_addr) }
  .debug_line_str 0 : { *(.debug_line_str) }
  .debug_loclists 0 : { *(.debug_loclists) }
  .debug_macro 0 : { *(.debug_macro) }
  .debug_names 0 : { *(.debug_names) }
  .debug_rnglists 0 : { *(.debug_rnglists) }
  .debug_str_offsets 0 : { *(.debug_str_offsets) }
  .comment 0 : { *(.comment) }
  .note.GNU-stack 0: { *(.note.GNU-stack) }
/**

 * .xt.prop and .xt.lit sections will be used by the debugger and disassembler

 * to get more information about raw data present in the code.

 * Indeed, it may be required to add some padding at some points in the code

 * in order to align a branch/jump destination on a particular bound.

 * Padding these instructions will generate null bytes that shall be

 * interpreted as data, and not code by the debugger or disassembler.

 * This section will only be present in the ELF file, not in the final binary

 * For more details, check GCC-212

 */
  .xtensa.info 0: { *(.xtensa.info) }
  .xt.prop 0 : { *(.xt.prop .xt.prop.* .gnu.linkonce.prop.*) }
  .xt.lit 0 : { *(.xt.lit .xt.lit.* .gnu.linkonce.p.*) }
  /DISCARD/ :
  {
   *(.fini)
   *(.eh_frame_hdr)
   *(.eh_frame)
  }
}
ASSERT(((_iram_end - ORIGIN(iram0_0_seg)) <= LENGTH(iram0_0_seg)),
          "IRAM0 segment data does not fit.")
ASSERT(((_heap_low_start - ORIGIN(dram0_0_seg)) <= LENGTH(dram0_0_seg)),
          "DRAM segment data does not fit.")